
Efficient Position Decoding Methods Based on Fluorescence

Calcium Imaging in the Mouse Hippocampus

Mengyu Tu1,2, Ruohe Zhao3,4, Avital Adler3, Wen-Biao Gan3,5, and Zhe S. Chen1,5

1 Department of Psychiatry, New York University School of Medicine, New York, NY

10016, USA.

2 Nanyang Technological University, Singapore.

3 Skirball Institute, Department of Neuroscience & Physiology, Department of Anes-

thesiology, New York University School of Medicine, New York, NY 10016, USA.

4 Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School,

Shenzhen, China.

5 Neuroscience Institute, New York University School of Medicine, New York, NY

10016, USA.

Correspondence should be addressed to Z. S. Chen (email: zhe.chen@nyulangone.org

or chenz04@nyu.edu).

Running title: Position decoding based on calcium imaging

Figures and Tables: 6 and 3

Submission category: Letters (Neural Computation)



Abstract: Large-scale fluorescence calcium imaging methods have become widely

adopted for studies of long-term hippocampal and cortical neuronal dynamics. Pyra-

midal neurons of the rodent hippocampus show spatial tuning in freely foraging or

head-fixed navigation tasks. Development of efficient neural decoding methods for

reconstructing the animal’s position in real or virtual environments can provide a

fast readout of spatial representations in closed-loop neuroscience experiments. Here,

we develop an efficient strategy to extract features from fluorescence calcium imaging

traces and further decode the animal’s position. We validate our spike inference-

free decoding methods in multiple in vivo calcium imaging recordings of the mouse

hippocampus based on both supervised and unsupervised decoding analyses. We

systematically investigate the decoding performance of our proposed methods with

respect to the number of neurons, imaging frame rate, and signal-to-noise ratio. Our

proposed supervised decoding analysis is ultrafast and robust, and thereby appealing

for real-time position decoding applications based on calcium imaging.

1 Introduction

Pyramidal cells in the rodent hippocampus are known to encode space. Large-scale

long-term calcium imaging has been used for studies of long-term memories in freely

behaving or head-fixed animals (Dombeck et al., 2010; Ziv et al., 2013; Jercog et al.,

2016; Mau et al., 2018). One of interesting neuroscience questions is to examine how

populations of hippocampal neurons represent space at different brain states, and

how these representations correlate with memory, learning and planning.

Genetically-encoded fluorescent reporters of neurobiological processes can be used

to monitor biochemical events and signals in neurons and tissues of living brains.

Rapid advances in neurotechnology have allowed us to simultaneously record thou-

sands or tens of thousands of neurons using large-scale calcium imaging (e.g., Pa-
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chitariu et al., 2017; Stringer et al., 2019). However, the curse of dimensionality

may arise for processing such high-throughput neural data, especially in closed-loop

neuroscience experiments.

Neural decoding for position reconstruction have been well studied based on large-

scale hippocampal neuronal activities or population responses. In electrophysiology,

multiple sources of effort have been dedicated to position decoding based on either

unsorted spikes or multi-unit activity (Chen, Kloosterman, Layton & Wilson, 2012;

Kloosterman et al., 2014; Deng et al., 2015; Ciliberti et al., 2018; Hu et al., 2018),

or the amplitude of ultra-high frequency band multi-site hippocampal field potentials

(Cao et al., 2019). In calcium imaging, there was an approximately linear relationship

between the peak amplitude of a somatic Ca2+ transient and the underlying number

of spikes in the recorded brain areas (Chen et al., 2013; Jercog et al., 2016). This

naturally invites the next question: can we directly estimate the position of freely

behaving animals directly based on the calcium imaging data without the need of spike

inference?

In the standard analysis pipeline for calcium imaging, spike inference algorithms

are used to extract spiking activity from fluorescence traces (e.g., Vogelstein et al.,

2010; Pnevmatikakis et al., 2016; Giovannucci, et al., 2018; Jewell & Witten, 2018;

Zhou et al., 2018; Pnevmatikakis, 2019). However, spike deconvolution is a challeng-

ing and computationally demanding procedure that seeks an approximate solution to

the inverse problem. However, statistical methods have also been developed to bypass

spike deconvolution for subsequent analyses, such as estimating neuronal firing rates

directly from calcium imaging data (Ganmor et al., 2016). In this paper, we pro-

pose a new analysis pipeline for position decoding based on in vivo calcium imaging

recordings from the mouse hippocampus. We show that the preprocessed fluores-

cence traces (without spike inference) can be used directly in either supervised and

unsupervised position decoding analysis. The proposed method not only is efficient
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in computational speed, but also shows comparable performance with the standard

spike-inference methods. From the unsupervised learning analysis, we further recover

the latent state representations that encode the animal’s position.
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Figure 1: (A) Illustration of two-photon calcium imaging dF/F fluorescence trace

and the inferred spiking activity. (B) Detected peaks are labeled by asterisks based

on a threshold criterion, yielding a marked point process (MPP), where the mark

represents the peak amplitude. (C) The asymmetric temporal filter. (D) Convolution

of the MPP with the temporal filter produces a filtered MPP, which can be viewed

as a proxy of the spiking activity.

5



2 Methods

2.1 Data preprocessing and approximate spike inference

In calcium imaging, the Ca2+ dynamics are characterized by the fluorescence traces,

which are typically shown in units of a percentage change of each imaged cell’s base-

line fluorescence level (i.e., dF/F ). At first, the standard preprocessing procedures,

such as motion artifact correction, neuropil removal, and source extraction, were con-

ducted for the raw calcium imaging data (Giovannucci, et al., 2018; Pnevmatikakis,

2019). In traditional neural data analysis, the spike inference procedure is further

employed to estimate the calcium concentration and the spiking activity from the

dF/F fluorescence traces. Here, we used one state-of-the-art spike deconvolution al-

gorithm based nonnegative deconvolution (Friedrich et al., 2017; Pachitariu et al.,

2018). At the end of spike inference, a time series of spiking activity (real-valued)

from each fluorescence trace was obtained (Figure 1A). The fluorescence trace can

be viewed as a temporal convolution between a discrete point process and low-pass

filter, corrupted by an additive noise process (Vogelstein et al., 2010). Regardless

the techniques or inference principle, spike deconvolution remains a computational

bottleneck for processing large-scale and long-term calcium imaging recordings.

To sidestep the spike deconvolution procedure, we developed a simple yet efficient

strategy for inferring the “proxy” of spiking activity. The procedure consisted of three

steps.

• Step 1: We first estimated the positive peak amplitude from the dF/F fluores-

cence traces. The amplitude were identified based on a threshold-based peak

detection algorithm (e.g., MATLAB function ‘findpeaks’; see Figure 1B). De-

pending on the noise level, the minimum peak threshold was often set as at

least 10-30% peak fluorescence amplitude.

• Step 2: We set the signal below the threshold to 0, and then converted the
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fluorescence trace into a one-dimensional marked point process (MPP; Jacobsen,

2006), where the nonzero value indicated the peak event, and the mark was

defined by the peak amplitude (Figure 1B).

• Step 3: To accommodate the spiking activity during the rise time before reach-

ing the peak, we convolved the marked point process with an asymmetric tem-

poral filter h (Figure 1C), resulting in a filtered MPP (Figure 1D). The custom

designed filter may have the following shape

h(t) =


1−exp(−α(t−t0))

A
t < t0 ≤ 0

0 t > t0

where α is the decay parameter, and A = exp(−αt0)/α is a normalization

constant such that
∫
h(t)dt = 1.

The signal-to-noise ratio (SNR) of calcium imaging is relative to the fluorescent

indicator dye. The measurement of fluorescence responses depends on several factors

(Malik et al., 2011): (i) the nature of the stimulus and the modulation of neural

activity due to the stimulus; (ii) movements due to highly structured physiological

processes; (iii) spontaneous neural activity; and (iv) optical and electrical noise. To

quantify the SNR of the observed fluorescence trace for each neuron, we defined an

empirical measure as follows

SNR =
Var[mark]

Var[baseline]
(2.1)

where the denominator defines the variance of spontaneous dF/F trace (“noise”),

and the numerator defines the variance of detected peak amplitudes (“signal”).

Upon feature extraction, either the deconvolved spiking activity or the filtered

MPPs of selected neurons were used as the observations for the subsequent decoding
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analysis. Notably, the filtered MPPs can be viewed and used as the surrogate of scaled

spiking activity). However, as we see below, position decoding does not require exact

spike timing or scaling, implying that a proxy of spiking activity can provide a much

simpler and efficient solution to decoding analysis.

2.2 Optimal linear estimation (OLE) for position decoding

For simplicity, we used the standard OLE method (Agarwal et al. 2014; Cao et

al., 2019). The OLE method is based on a linear regression model. However, the

principle discussed here can be adapted for other likelihood-based decoding methods,

for possible incorporation of a temporal prior.

We assumed that the decoded position x can be linearly reconstructed from neural

activity y = [y1, . . . , yC ] using a set of functions {φc(x)}

x̂ = arg max
x

C∑
c=1

ycφc(x) (2.2)

In one-dimensional environment, we mapped the position x (with length L) via K

equally spaced von Mises functions that are characterized by a circular variable θ =

2πx/L, and Bk(θ) = exp(κ cos(θ− θk)) for k = 1, . . . , K. Upon representing φc(x) by

a linear combination of circular functions, Equation 2.2 can be reformulated as

θ̂ = arg max
θ

C∑
c=1

yc

K∑
k=1

wi,kBk(θ) (2.3)

The unknown C-by-K matrix W = {wi,k} was estimated by solving the following

multi-input multi-output regression problem

Ŵ = arg min
W

∑
t

‖yt −WB(θt)‖ (2.4)

where yt denotes the vector containing C-dimensional observed features at time t,

and B(θt) = [B1(θt), . . . ,BK(θt)] denotes a K-dimensional vector that expands the
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position into a set of overlapping smooth basis functions (Figure 2A). The parameter

K determines the number of basis functions, and κ controls the smoothness. In our

data analyses, a common parameter setup was K=25-100 (step size 25), κ=25-700

(25, 50, 75, 100, 200, . . . , 700), and their optimal values were selected via cross-

validation.

Assuming Gaussianity, the solution to Equation 2.4 was given by a least-squared

(LS) estimate. In the preprocessing step, the observed features can be Z-scored across

neurons. However, when the number of neurons is large (e.g., > 500), the overfitting

problem will potentially arise. To resolve this issue, we imposed a sparsity constraint

on the estimate and employed a variational Bayes (VB) linear regression combined

with an automatic relevance determination (ARD) procedure (Bishop, 2006; Wu et

al., 2016; Drugowtisch, 2017). The VB-ARD sparse regression showed improved

decoding performance in the presence of high-dimensionality (see results in section

3.2).

2.3 Maximum likelihood estimation (MLE) for position de-

coding

In addition to OLE, we also employed MLE for position decoding (Zhang et al.,

2018; Davidson et al., 2009). Let {λc(x)} denote the derived place fields (‘spatial

tuning curves’ for a position variable x), of hippocampal pyramidal neurons, and let

yt = {yc,t} denote the observed population vector. Assuming Poisson probability

firing for each neuron, for spike count observations (where yc,t is either a positive

integer or zero), the likelihood function of the observed sorted spike activity yt is

given by:

P (yt|xt) =
C∏
c=1

Poisson(yc,t|λc(x)∆) (2.5)

9



y
t-1

……

y
t

S
t-1

S
t+1

S
t

HMM

Latent state sequences

Deconvolved spiking activity 

or filtered marked point processes

y
t+1

BA

-2 0 2 4

Raw data

0

2000

4000

6000

8000

C
o
u
n
t

0 5

Raw data

0

0.2

0.4

0.6

0.8

1

C
D

F

0 10 20

Resampled data

0

0.2

0.4

0.6

0.8

1

C
D

F

0 10 20

Resampled data

0

1000

2000

3000

4000

5000

6000

7000

C
o
u
n
t

C

resampling

rank-invariant

Figure 2: (A) A set of overlapping von Mises basis functions. (B) Schematic of a

hidden Markov model (HMM) for inferring latent state sequences {St} based on either

deconvolved spike activity or filtered marked point processes {yt}. (C) Illustration

of rank-invariant resampling by transforming the raw data into resampled data. The

rank order is preserved between two cumulative distribution functions (CDFs).

where ∆ denotes the temporal bin size. The maximum likelihood estimate seeks to

find an optimal estimate x̂ such that

x̂m.l.e. = arg max
x

P (y|x). (2.6)

2.4 Bayesian hidden Markov model (HMM)

In our previous work, we developed a hidden Markov model (HMM) to uncover latent

structures of hippocampal population activity during spatial navigation, based on
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observed spiking activity (Chen, Kloosterman, Brown & Wilson, 2012; Chen et al.

2014) or multichannel LFP features (Cao et al., 2019). Here we extended the idea by

using the new features derived from the fluorescence calcium imaging traces.

We assumed that the latent state process follows a first-order discrete-state Markov

chain {St} ∈ {1, 2, . . . ,m} (Figure 2B). Let y1:T = {yc,t}C×T denote an observed mul-

tivariate time series of neural response vector. For spike count observations (where

yc,t is zero or positive integer), we assumed that the neuronal response, conditional

on the latent state, follows a Poisson distribution with an associated tuning curve

function Λ = {λc} = {λc,i}. The joint probability distribution of the observed and

latent variables is characterized by

p(y1:T , S1:T |π,P ,Λ) = p(S1|π)
T∏
t=2

p(St|St−1,P )
T∏
t=1

p(yt|St,Λ) (2.7)

where P = {Pij} denotes an m × m state transition matrix, with Pij representing

the transition probability from state i to j; π = {πi} denotes a probability vector

for the initial state S1. Neurons were assumed conditionally independent, so that the

conditional probability distribution has a factorial form:

p(yt|St,Λ) =
C∏
c=1

Poisson(yc,t|λc,St), (2.8)

To accommodate automatic selection of model order m, we have developed a

Bayesian nonparametric inference procedure to identify the unknown parameters

{π,P ,Λ} and the latent state sequences {S1:T} (Linderman et al., 2016). The

Bayesian nonparametric version of the HMM—the hierarchical Dirichlet process-

HMM (HDP-HMM)—generalizes the finite-state HMM with a nonparametric HDP

prior. Upon completion of Bayesian inference, we estimated the posterior of latent

state sequences S1:T , the tuning curve matrix Λ, and identified the correspondence

between the inferred state and animal’s position (Chen et al., 2014).
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2.5 Rank-invariant resampling

It is noted that the deconvolved spiking activity or filtered MPPs derived from the

fluorescence traces are nonnegative real-valued, which do not satisfy the Poisson as-

sumption in the likelihood model (Equation 2.5 or 2.8). To accommodate this change,

we employed a rank-invariant resampling procedure (e.g., Honey et al., 2009) to gen-

erate the same size of random samples from a targeted Poisson distribution.

In the resampling procedure, we replaced the original ordered samples with the

resampled ordered samples (by keeping the order unchanged). Specifically, we re-

placed the smallest raw data value with the smallest randomly sampled value, the

second-smallest raw data value with the second-smallest randomly sampled value, and

so on until all raw data values were replaced. A schematic illustration of the rank-

invariant resampling procedure is shown in Figure 2C. Since the targeted resampled

data were guaranteed to be Poisson distributed, we treated them as the pseudo spike

count observations and then conducted the inference described in sections 2.3 or 2.4.

The choice of the targeted mean statistic in the targeted Poisson distribution was

ad hoc, and the HMM-based decoding performance may vary according to the Poisson

mean statistic. When the latent state is known, the rank-invariant resampling may

be approximately scale and translationally invariant (see Appendix).

2.6 Experimental methods

Table 1: Summary of calcium imaging data from the mouse hippocampus.

Dataset (animal) # session # cells sampling rate imaging
Dataset 1 (mouse 1) 1 79 2 Hz two-photon, GCaMP6s

(mouse 2) 1 53 2 Hz two-photon, GCaMP6s
Dataset 2 (mouse 3) 4 1,091 20 Hz one-photon, GCaMP6f

(mouse 4) 4 835 20 Hz one-photon, GCaMP6f
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Hippocampal dataset 1. In the first dataset, male and female C57/BL6 mice

with age of 6-8 weeks (Charles River Laboratory) were used in the experiments. We

used AAV1-synapsin-GCaMP6s to label neurons in hippocampal dorsal CA1 area,

and tracked somatic calcium activity of neurons by two-photon imaging through a

chronic window as previously described (Dombeck et al., 2010). The in vivo Ca2+

imaging experiments were performed using a Bruker two-photon laser scanning system

equipped with a Ti:sapphire laser (Mai Tai DeepSee; Spectra Physics) tuned to 920

nm. The average laser power on the brain sample was ∼15-30 mW. All imaging was

performed using a 40× objective immersed in an artificial cerebral spinal fluid (ACSF)

solution and with a 1× digital zoom. Images were collected at a resolution of 473×473

pixels (Figure 3A) and a frame rate of 2 Hz. The head-restrained animal was trained

to move his forelimbs to perform running forward on the treadmill (Figure 3B), while

the rotation of belt provided continual changes in visual and tactile stimuli (Royer et

al., 2012). Training on the 108-cm treadmill consisted of 8 trials with a continuous

running for 10 laps in each trial (80 laps in total). The treadmill speed was 2.5-

2.7 cm/s. The dF/F fluorescence calcium activity (Figure 3C) in trial #8 (laps 71

to 80) was analyzed. Recordings of two mice were used in the position decoding

analysis (Table 1). Overall, the mean±SD cell population firing rate was 0.1440 ±

0.1121 (spike magnitude/s) for mouse 1, and 0.1438± 0.1187 (spike magnitude/s) for

mouse 2. In addition, the mean±SD rate of fluorescence evoked events was 0.1647±

0.0826 Hz and 0.1642 ± 0.0901 Hz for two mice, respectively. The experimental

studies were performed in accordance with the National Institutes of Health (NIH)

Guide for the Care and Use of Laboratory Animals to ensure minimal animal use

and discomfort, and were approved by the New York University School of Medicine

(NYUSOM) Institutional Animal Care and Use Committee.
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Hippocampal dataset 2. The second dataset consists of one-photon calcium imag-

ing from the mouse hippocampus (https://data.mendeley.com/datasets/f9fmrj98n3/1).

Details of experimental setup and recordings are referred to the paper (Mau et al.,

2018). Briefly, mice were introduced to a 40×60 cm2 rectangular track with an em-

bedded motorized mouse treadmill as one of its long sides. Mice were acclimated to

the environment until they reliably sought 20% sucrose water solution. Then, they

were trained to run in place on the treadmill for increasing time intervals (>6 s) in

between laps. For the beginning sessions, running speed varied between 10-24 cm/s.

Once mice would reliably run for ∼30 laps per day, data were then collected for 4

days, with each session lasting approximately 30 min and consisting of ∼30 laps of

10 s treadmill running and water retrieval. A miniaturized epifluorescence micro-

scope (Inscopix) was used to collect imaging videos of hippocampal CA1 activity at

a frame rate of 20 Hz. Videos were motion corrected and cropped (500×500 pixels)

to exclude areas without GCaMP6f activity. The videos were then post-processed us-

ing an open-source software package (https://github.com/SharpWave/TENASPIS)

to identify the regions of interest (ROIs) and further extract the fluorescence activity

(dF/F ; Figure 4B). Across days, imaged neurons were tracked using image registra-

tion software. We selected two mice (G45 and G48) from this public dataset for our

current study. Overall, the mean±SD cell population firing rate was 0.0022± 0.0011

(spike magnitude/s) for mouse 3, and 0.0010± 0.0003 (spike magnitude/s) for mouse

4. In addition, the mean±SD rate of fluorescence evoked events was 0.0282± 0.0146

Hz and 0.0198± 0.0089 Hz for two mice, respectively.

3 Results

In the following analyses, we tested our methods on two calcium imaging datasets

recorded from head-fixed or freely behaving mice. We compared the performance
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of supervised and unsupervised decoding analyses based on the deconvolved spiking

activity, MPPs or filtered MPPs. In supervised decoding analysis, we conducted 10-

fold cross-validation using OLE or MLE. In unsupervised learning analysis, we used

90% data for training the HMM, and 10% held-on data for validation. For simplicity,

median position decoding errors were reported for performance assessment. However,

the mean, variance and distribution statistics were also important. Custom software

for all analyses was written in Python and MATLAB, and are publicly accessible

(www.cn3lab.org/software.html).

3.1 Hippocampal dataset 1

Using a temporal bin size of 500 ms (i.e., 2 Hz frame rate), we compared the cross-

validated median position decoding error derived from four different features: (i)

deconvolved spiking activity from fluorescence traces; (ii) unfiltered MPPs derived

from fluorescence traces; (iii) filtered MPPs derived from fluorescence traces; (iv)

Poisson-distributed resampled data derived from feature (iii). The first three fea-

tures were used in OLE, and the fourth feature was used in MLE and HMM. To

obtain feature (i), we used a state-of-the-art spike nonnegative deconvolution method

(Friedrich et al., 2017). From the inferred spiking activities of hippocampal cells, we

constructed the normalized place fields (Figure 3D, left panel). By comparison, there

was a high degree of resemblance in heat map derived from filtered MPPs (Figure 3D,

right panel).

Remarkably, the MLE or OLE-based supervised decoding analysis showed that

our proposed feature (ii) yielded lower median decoding error than deconvolved spik-

ing activity in two tested animals (Figure 3E and 3F). Using the same feature, MLE

produced better decoding accuracy than OLE in supervised decoding analysis. Com-

pared with OLE, the HMM-based unsupervised decoding analysis showed comparable

median decoding error based on (resampled) deconvolved spikes; however, the me-
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dian decoding accuracy was worse based on the (resampled) filtered or unfiltered MPP

features. In all tested methods, the filtered MPPs yielded consistently better perfor-

mance than the unfiltered MPPs (especially in the HMM-based method), implying

the importance of preprocessing in fluorescence traces.

It is noteworthy that the choice of the hyperparameters K and κ influenced the

position decoding accuracy. The optimal values could be selected by cross-validation

(Figure 3G). However, the decoding accuracy was relatively robust with a wide range

of hyperparameters. For implementation simplicity, we have used a finite-length

digital filter h = [h1, h2, h3, 0, 0, 0, 0] (where h1 < h2 < h3 and h1 + h2 + h3 = 1) and

assumed a constant h3/h2 = α. Similarly, the shape of temporal filter, or the decay

constant α, could be optimized by cross-validation.

3.2 Hippocampal dataset 2

We linearized the rectangular track and excluded the treadmill area, resulting a track

length of ∼150 cm (Figure 4B). We used a velocity threshold of 5 cm/s to exclude low-

speed movement periods. The summary of the dataset is shown in Table 1. Similar

to the first dataset, we inferred individual spiking activities and filtered MPPs, and

computed the corresponding heat maps of hippocampal place fields (Figure 4C). In

the remaining decoding analyses, we only focused on the results based on deconvolved

spikes and filtered MPPs.

We binned the spiking activity or filtered MPPs with a bin size of 200-300 ms. We

picked the bin size that yielded the better decoding performance (mouse 3: 300 ms;

mouse 4: 200 ms). We repeated both supervised and unsupervised decoding analysis

as before, and varied the number of neurons by randomly selecting a subset of the

population. Each decoding analysis was repeated 20 times. In the OLE method, we

used the same hyperparameters for all tested features (K = 75 and κ = 25 in mouse 3;

K = 25 and κ = 25 in mouse 4). In the MLE method, we resampled the deconvolved
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spikes or filtered MPPs with Poisson count data (using the same mean statistic: 5).

In the HMM method, we used the same number of latent states for all tested features

(m = 50). The results are shown in Figure 4D and Figure 4E. As seen, excellent

decoding performance was achieved by using only a small number of neurons, and

the decoding accuracy gradually saturated with the increasing number of neurons.

Comparing supervised and unsupervised decoding analyses, in the mouse-3 record-

ing, MLE consistently yielded the overall best decoding performance, while OLE and

HMM approaches had comparable decoding accuracy when the number of neurons

were small; however, OLE-based decoding achieved slightly better accuracy than the

HMM-based decoding with increasing number of neurons. In the mouse-4 recording,

MLE still had the lowest decoding error, whereas the HMM-based strategy achieved

better decoding accuracy than the OLE-based strategy. More remarkably, the sim-

ple filtered MPP (resampled) features achieved the best median decoding error in the

presence of small number of neurons (C = 50 or C = 100). From Figure 4E, it seemed

that the optimal number of neurons for achieving a low yet reliable decoding error was

around 200, regardless of the used methods or features. Notably, when the number

of neurons was more than 400, the LS estimate in the OLE suffered from overfitting,

whereas the sparse VB-ARD estimate did not (Figure 4F). However, the VB-ARD

estimate was biased; therefore the LS solution was slightly better when there was

no overfitting. In addition, we investigated the impact of resampled Poisson mean

statistic on the decoding accuracy. We found that the decoding accuracy changed ac-

cording to the resampling mean statistics, and the optimal remapping value depended

on the dataset (Figure 4G). The optimal resampling mean varied from different fea-

tures and different datasets. The spike-based decoding accuracy was slightly more

stable, possibly due to the distribution difference between the filtered MPP features

and deconvolved spikes.

Next, we focused on the investigation on the OLE method. Specifically, we sys-
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tematically downsampled the florescence traces (from 20 Hz to 10 Hz, to 4 Hz and

to 2 Hz) and investigated the impact of sampling rate on position decoding accuracy.

We considered two different downsampling conditions: (i) we took one from every

N samples from the 20 Hz sampled florescence trace; (ii) we temporally averaged

every N samples from the 20 Hz sampled florescence trace. Note that in each case,

the decoding bin size remained the same as before resampling. Using 100 randomly

selected neurons, we repeated the decoding analysis pipeline 20 times. We found that

the decoding accuracy trends derived from these two downsampling operations were

somewhat similar, but the accuracy was slightly better in the 2nd downsampling con-

dition (Figure 5A). The OLE-based decoding accuracy was better with deconvolved

spikes than with filtered MPPs. In addition, we observed a decreasing trend in median

decoding error with a lower sampling rate. Although the result appeared counterin-

tuitive, our downsampling operations did not apply on the raw data directly, which

might deviate from the physical reality of low imaging frame rate.

Furthermore, we examined the relationship between the SNR and the OLE-based

decoding accuracy based on deconvolved spikes and filtered MPPs. In each calcium

imaging dataset, we computed and sorted the SNR (Equation 2.1), and used the top

N and bottom N neurons (N = 500 for mouse 3, and N = 400 for mouse 4) in

decoding, separately. We observed a decreased decoding accuracy with lower SNR,

for both deconvolved spikes and filtered MPPs (Figure 5B).

To test the stability and generalization of the decoding method based on filtered

MPPs, we further conducted cross-session OLE-based decoding analysis: training on

one session and testing on another session, while using randomly selected (yet identi-

cal) 100 neurons from the whole population. For a fair comparison, the within-session

position decoding error was computed by two-fold cross-validation. In between-session

decoding, data from one complete session were trained, followed by testing on another

complete session. Remarkably, we still achieved good position decoding accuracy
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across multiple days (Figure 5C). In general, the within-session (i.e., the diagonal)

had the lowest decoding error, followed by the between-session results in neighboring

days.

3.3 Computer simulations

Finally, to gain some insight into our proposed method, we conducted a computer sim-

ulation study using a setup similar to (Wei et al., 2019). Specifically, we assumed that

the animal ran 20 laps on a 1-m linear track with constant velocity. We assumed 50

hippocampal place cells, with Gaussian tuning curves that uniformly cover the track.

Next, assuming 20 Hz frame rate, we simulated Poisson-distributed spatially-tuned

ground-truth spike trains based on the tuning curves. We then used a generative

model described in (Friedrich et al., 2017; Wei et al., 2019) to generate fluorescence

traces from these spike trains with varying levels of background noise (Figure 5A).

Specifically, the calcium concentration traces ct are generated by a 2nd-order autore-

gressive (AR) model, and the fluorescence trace yt is related to calcium concentration

as follows (Friedrich et al., 2017):

ct =
2∑
i=1

αict−i + si (3.1)

yt = act + b+ εt (3.2)

where si denotes the spike activity, {a, b} are two linear regression parameters, and

εt ∼ N (0, σ2) denotes the Gaussian measurement noise with zero mean and vari-

ance σ2. Given a representative neuron’s simulated fluorescence trace, the ground-

truth spike activity, deconvolved spike activity, and filtered MPPs are shown in

Figure 5B. We repeated the decoding analyses based on 20 Monte Carlo runs un-

der different noise levels. In all simulations, we used the same convolution filter

h = [0.14, 0.29, 0.57, 0, 0], and the resampled Poisson mean statistic of 5. We also used
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the same criterion for peak detection, where the threshold was set as the 30% peak

fluorescence amplitude. The decoding results are shown in Table 2. As seen in the ta-

ble, our simulation decoding results were consistent with experimental data. Among

three decoding methods, the MLE achieved the best decoding accuracy. Within the

same decoding method, the filtered MPPs yielded the best decoding performance,

followed by deconvolved spikes, and then unfiltered MPPs. In addition, the decoding

accuracy reduced with decreasing SNR.
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Figure 3: Results of hippocampal dataset 1. (A) Calcium imaging of the mouse CA1

(scale bar: 15 µm). (B) Schematic of mouse running on a sensory-cued treadmill.
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Figure 3: continued. (C) Selective dF/F fluorescence traces from five hippocampal

neurons. (D) Heat map shows a summary of peak firing rate (derived from decon-

volved spikes, left or from filtered MPPs, right) location of hippocampal neurons with

respect to the treadmill position (mouse 1). Neurons were sorted according to the

location of the peak firing rate. Dark color shows high firing probability. All neurons

were used in the decoding analyses. (E) Snapshot of supervised and unsupervised po-

sition decoding on the held-out data. Black dotted line shows the animal’s position

(mouse 1). (F) Comparison of median position decoding error based on OLE, MLE,

and HMM methods. Error bar shows the bootstrapped SD. (G) Cross-validation of

parameters K and κ derived from the OLE-based decoding analysis using the filtered

MPP features. White cross indicates the minimum value.
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Figure 4: Results of hippocampal dataset 2. (A) Selected dF/F fluorescence traces

from five neurons. (B) An example of hippocampal receptive field shown in the

rectangular track. Warm color shows high firing probability. Animal’s trajectories

were overlaid in the place receptive field.
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Figure 4: continued. (C) Heat map shows a summary of peak firing rate location of

hippocampal neurons with respect to the linearized track location (mouse 3). Left

panel was derived from deconvolved spikes, and right panel was derived from filtered

MPPs. (D) Snapshot of supervised and unsupervised position decoding on the held-

out data. Black dotted line shows the animal’s actual position (mouse 3). Only

200 neurons were used in the decoding analysis. (E) Comparison of supervised and

unsupervised decoding accuracy based on different numbers of neurons. Error bar

shows the SD of median decoding error based on 20 random selections. (F) When

the number of neurons was large (≥400), the least-squared (LS) solution to the OLE

suffered from overfitting, whereas the variational Bayes (VB) solution did not. (G)

In assessing the HMM-based decoding accuracy (randomly selected 50 neurons, re-

sampled filtered MPP features), the optimal resampling Poisson mean varied from

different features and different datasets. Error bar shows the SD.
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Figure 5: Results of hippocampal dataset 2. (A) Comparison of OLE-based decoding

accuracy with four different sampling frequencies under two downsampling condi-

tions. Error bar shows the SD based on 20 random selections of 100 neurons used for

decoding analysis. (B) Comparison of OLE-based decoding accuracy using an equal

number of low or high-SNR neurons. The performance derived from the same number

of randomly selected neurons is shown the middle as control. Error bar denotes the

bootstrapped SD. (C) Within- and between-session position decoding error matrix

shows the generalization ability of the OLE-based decoding strategy in four consec-

utive run days (mice 3 and 4). A total of 100 randomly selected neurons were used

for the decoding analysis. The number in each entry represents the averaged median

decoding error.
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3.4 Computational speed

Low-latency computation and real-time scalable decoding analysis are two important

factors for closed-loop neuroscience experiments. Compared to the state-of-the-art

fast spike deconvolution methods, our supervised decoding strategy is simple and

ultrafast. Here, we compared the CPU time between two fast spike deconvolution

methods (Friedrich et al., 2017; Rahmati et al., 2018)1 and our strategy. Using

custom-written MATLAB codes (MATLAB R2019, Windows 10 OS; Intel® CoreTM

i7-6500U CPU 2.50 GHz, 8 GM RAM), the CPU time was averaged across complete

recordings and all neurons. A naive (non-optimized) implementation of our strategy

already achieved significant speedup in computation. We expect an efficient C/C++

implementation will further improve the speed.

Several points are noteworthy below:

• The convolution step in our proposed preprocessing procedure introduces a

temporal delay and appears acausal. This issue becomes more particularly

problematic when the frame rate is low (e.g., 2 Hz). However, when the frame

rate is relatively high (e.g., 20 Hz), the delay and causality issue will not be the

issue given the decoding bin size is 200-300 ms (i.e., 4-6 frames).

• If the causation of real-time processing is a real concern, we can also discard

the convolution step and only use MPPs (instead of filtered MPPs) for the

subsequent decoding analysis. The decoding result will be slightly reduced

(e.g., Figure 3F and Table 2), but still acceptable.

• Unlike the OLE method, the MLE or HMM-based decoding strategy relies on

a rank-resampling strategy, therefore limiting its real-time application.

1The software packages are available at https://github.com/j-friedrich/OASIS and
https://github.com/VahidRahmati/UFARSA.
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Table 3: Comparison of computation speed (mean±SD) between our pre-

processing method and two spike deconvolution methods. Statistics were

averaged across all neurons in each dataset.

Method
CPU time (ms per sample)

Dataset 1 Dataset 2
proposed OLE method (1.77±0.18)× 10−4 (1.63±0.19)× 10−4

spike deconvolution (Friedrich et al., 2017) 0.0556±0.0060 0.0483±0.0060
spike deconvolution (Rahmati et al., 2018) 0.0012±0.0002 0.0011±0.0001

4 Discussion

In this paper, we have proposed an efficient method to infer the proxy of spiking

activity directly from dF/F florescence in calcium imaging, and used it for the subse-

quent position decoding analysis. Our spike inference-free procedure is simply based

on a peak detection followed by a filtering operation. The temporal filter can be opti-

mized depending on the neuron’s firing rate and the imaging frame rate. The strategy

has been proven effective in both supervised and unsupervised decoding analyses for

reconstruction of the animal’s position. It is demonstrated, via both simulated and

experimental data, that exact spike timing is not needed for position decoding; in-

stead, we can infer the mouse’s position directly from the proxy of spiking activity

via filtered MPP.

In the literature, many methods have been developed for position decoding anal-

ysis based on calcium imaging of the hippocampus or neocortex (Ziv et al., 2013; Mao

et al., 2018; Wei et al., 2019). The common idea of these methods is to establish neu-

ronal correlates (either deconvolved spikes or their proxy) with the animal’s position.

Similar rationale has also been extended for decoding time (Mau et al., 2018). Statis-

tical modeling of deconvolved calcium signals or their preprocessed signals is critical

for interpreting calcium measurements. However, some analyses, deconvolution step

may turn out unnecessary, as demonstrated in our current study and other’s (e.g.,
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Ganmor et al., 2016).

Based on the mouse hippocampal calcium imaging data, we show that a small

number (∼100) of hippocampal place cells is sufficient to provide a reliable spatial

readout at various imaging frame rates. The unsupervised HMM-based method can

also uncover spatial representations of a population of rodent hippocampal place

cells from their calcium imaging activities, consistent with our prior results derived

from spikes and LFP signals (Linderman et al., 2016; Cao et al., 2019). Once the

temporal resolution of imaging techniques is further improved (say 50-100 Hz), the

same analysis can be used to decode hippocampal memory replays (e.g., Liu et al.,

2018; Cao et al., 2019; Chen et al., 2016; Chen & Wilson, 2017; Maboudi et al.,

2018). Real-time calcium imaging-based decoding analyses can be readily adapted

for closed-loop experiments in behaving mice.

Our calcium imaging “place” decoding analysis for the mouse hippocampus can

be also extended to neocortical circuits that encode spatial information, including

the neurons from the entorhinal cortex, primary visual cortex, retrosplenial cortex,

parietal cortex (Hafting et al., 2005; Ji & Wilson, 2007; Whitlock et al., 2008; Hag-

gerty & Ji, 2015; Mao et al., 2017). Extending this analysis pipeline to large-scale

in vivo neocortical population calcium imaging data in other behavioral tasks will be

the subject of future investigation.

Appendix: Implication of rank-invariant resampling

Without the loss of generality, we assume the observed data y ∈ R. The goal of

rank-invariant resampling is to find a linear or nonlinear transformation: ynew =

φ(y), where φ(·) denotes a nonnegative monotonic increasing function, such that the

rank-invariant order among the observed samples is preserved. The rank-invariant

resampling procedure can be viewed as a special form of nonlinear mapping function.

For simplicity, let us first consider likelihood inference where the latent state
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process {St} is known. In the HMM, the model parameter related to the observed

data likelihood is the rate parameter Λ = {λc,i}. The maximum likelihood estimate

(m.l.e.) of the rate parameter, given the observations y1:T = {y1,1:T , . . . , yC,1:T}, is

given by λ̂c,i:

λ̂m.l.e.
c,i = arg maxP (yc,1:T |λc,i) = arg max

T∏
t=1

P (yc,t|λc,i)

where λc,i = Ep(y)[yc,t] denotes the mean statistic under the empirical distribution of

raw data. Given the transformed observations φ(y1:T ) in a new coordinate system,

the new rate parameter is defined as

λnewc,i = Ep(y)[φ(yc,t)] = Ep(ynew)[y
new
c,t ]

In a special case where φ(·) is a linear function, it is easy to verify that the parameter

inference is scale and translational invariant. Let φ(yc) = αyc + β, the m.l.e. of

new rate parameter λnewc,i is αλ̂m.l.e.
c,i + β, where α and β are two arbitrary positive

constants. When φ(·) is nonlinear, λnewc,i 6= φ(λc,i) (the exact inequality sign depends

on the convexity of φ). Nonetheless, the nonlinear function can be linearized, and the

equality may approximately hold around the local linearized region.

The rank-invariant resampling can be approximately viewed as the implementa-

tion of a set of domain-based piecewise linear functions within the CDF interval of

[0, 1]. Therefore, the local invariance property approximately holds. In the presence

of latent state variables, the invariance property cannot be guaranteed.
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